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Abstract. We describe quantum Monte Carlo methods for simulating quantum systems. These
techniques are particularly well-suited for nanomaterials where quantum effects often fall out-
side conventional approaches. We review recent applications to quantum dots, buckyballs, and su-
perfluid helium nanoclusters. (For Handbook of Computational Nanotechnology Encyclopedia of
Nanoscience and Nanotechnology)
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1. INTRODUCTION

Monte Carlo methods are computational approaches which, one way or another, in-
volve averaging over stochastic or random processes. Computer simulations are the only
known general approaches for exactly treating high-dimensional systems; that is, if the
number of degrees of freedom is greater than about ten. In classical statistical mechan-
ics one uses a type of Monte Carlo, namely random walks, to determine thermodynamic
properties of many-body systems, such as the phase diagram or the energy as a function
of temperature. The correspondence principle says that quantum mechanics reduces to
classical mechanics in the limits of low density and high temperature, so it is natural
to expect that general methods for calculating properties of quantum many-body sys-
tems must also involve random walks. Quantum simulations are more complicated: in
classical mechanics one only has to do integrals over the Boltzmann distribution, while
in quantum mechanics one must also determine the quantum density matrix or, at low
temperature, the wave function. Exact methods which can treat many-particle systems
are only known in a few cases. However, even with their imperfections, the Quantum
Monte Carlo (QMC) methods are the most powerful computational techniques available
to treat quantum systems.

The first quantum Monte Carlo methods were by Donsker and Kacs in the early
1950’s [1]. In the 1960’s Kalos developed methods for bosonic systems, leading to the
solution of the problem of the hard sphere system in 1972 [2, 3]. Anderson pioneered
the use of methods for small molecules in 1975 [4, 5]. Ceperley and others developed
methods for fermion systems, in particular the fixed-node importance sampled diffusion
Monte Carlo method [6]. Its application to the electron gas was important in improving
density functionals [7]. The realization of Feynman’s theory of superfluid systems was
developed by Ceperley and Pollock in the 1980’s [8, 9, 10]. In the 1990’s methods for
more realistic systems including pseudopotentials were developed by Fahy [11, 12],
Mitas [13, 14], and others [15, 16]. In this period, generalization of fixed-node methods
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for finite temperature [17] and for complex trial functions have been developed [18, 19].
There has also been a great deal of progress in regards to lattice calculations not
described in this article.

The abilities of QMC make it a particularly useful technique for studying nanomate-
rials. A lot of experimental research is aimed at realizing novel quantum states in nanos-
tructures. Mean field theories often fail to describe these quantum states, and QMC is
a useful alternative. Many of the Hamiltonians used to model nanostructures cannot be
treated with conventional quantum methods, such as density functional theory and the
use of variation methods with specialized basis sets. In these cases, QMC is often more
flexible and reliable than those approaches. Thermal effects can be important in nanoma-
terials, and can be naturally included in QMC simulations. For example, magnetic tran-
sitions at finite temperature are often studied with Monte Carlo Ising simulations, so one
would expect similar properties of quantum nanomagnets will require QMC simulations.
The nature of simulations also embraces the complexity present in many nanosystem, in
contrast to more reductionist analytic techniques.

Quantum Monte Carlo often scales linearly or as a low-order polynomial with sys-
tem size, usually no worse than order(N3). This is in contrast to exact diagonalization
and other many body techniques that are limited to just a few particles because of poor
size scaling. With the exponential growth of computer power described by Moore’s law,
QMC is able to directly tackle nanoscale structures containing hundreds or thousands of
particles. Experimental techniques now allow manipulation of nanostructures with tens
to thousands of particles; this progress is meeting the exponentially increasing capa-
bilities of QMC simulations. Recently, the proliferation of low-cost computer clusters,
built from commodity personal computer parts, has given a further edge to Monte Carlo
simulations since QMC calculations are naturally parallel. One simply uses different
random number streams on different processors and averages across the independent
simulations. Parallelism also allows direct averaging over model variables, such as al-
loy fluctuations or generalized boundary conditions, by averaging over an ensemble of
simulations, each run on its own processor.

This article is organized as follows. QMC algorithms are applicable to a wide va-
riety of models, which we summarize in Section 2. In Section 3 we describe ground
state QMC techniques. These are the best developed QMC algorithms, and have been
very successful at calculating properties quantum dots, molecules, and nanocrystals. In
Section 4 we describe the finite temperature techniques. In these path-integral-based
algorithms, the correspondence with classical simulations is most clear. We review ap-
plications of path integrals to nanoscale helium droplets and quantum dots. We conclude
in Section 5 with a discussion of currents trends and important challenges for QMC.

2. COMMON MODELS FOR NANOSTRUCTURES

There are many types of nanostructures, and we illustrate a few commonly studied sys-
tems in Fig. 1. While there is much variety, all nanostructures contain many atoms ar-
ranged on scales between a nanometer and a micron. A variety of models are commonly
used to describe nanostructures.
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FIGURE 1. Illustration of the nanostrucutures considered in this review.

2.1. Theab initio Hamiltonian

The non-relativistic many-body Hamiltonian,

H =
Ne

∑
i=1

p2
i

2me
+

Nion

∑
i=1

P2
i

2Mi
+ ∑

i< j
electrons

e2

r i j
+ ∑

i< j
ions

ZiZ je2

Ri j
−

Ne

∑
i=1

Nion

∑
j=1

Z je2

|r i −Rj |
, (1)

is the starting point for mostab initio work on atoms, molecules, and solids. In this
articleRi refers to the coordinate of theith ion andr i to theith electron. Although Eq. 1
is general, determination of exact numerical solutions quickly becomes intractable due
to the many interacting degrees of freedom and the required fermion antisymmetry of the
wavefunction. One often resorts to single particle approximate theories, such as Hartree-
Fock or density functional theory. The QMC techniques described in this article allow
numerical many-particle quantum simulations and are directly applicable to theab initio
Hamiltonian.
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A common approximation to theab initio Hamiltonian is the use of pseudopotentials
to replace core electrons with a (non-local) ionic pseudopotential,

H =
Ne

∑
i=1

p2
i

2me
+

Nion

∑
i=1

P2
i

2Mi
+ ∑

i< j
electrons

e2

r i j
+ ∑

i< j
ions

ZiZ je2

Ri j
+

Ne

∑
i=1

Nion

∑
j=1

∞

∑̀
=0

V̂( j)
` (|r i −Rj |). (2)

HereV̂( j)
` is a non-local operator that acts only on the subspace with angular momentum

` about atomj.

2.2. Effective mass or quasiparticle models

Ab initio techniques are currently limited to a system of roughly one thousand elec-
trons, though increases due to improved methods and hardware can be anticipated. Typ-
ical nanostructures are much larger than this,e. g. a typical self-assembled quantum
dot contains about 10,000 atoms. To model these structures, it may be necessary to for-
mulate the electronic system in terms of quasiparticle excitations. In semiconductors,
these quasiparticles are conduction electrons and valence holes. In the simplest model
the conduction-band electrons are assumed to be a single, parabolic band,

H =
N

∑
i=1

p2

2m∗ +
N

∑
i=1

Ve(r i)+
N

∑
i< j

e2

εr
, (3)

whereVe(r) is an effective confining potential arising from strain, conduction-band
edges of heterostructures, and electric potentials,m∗ is the electron effective mass, and
ε is the dielectric constant.

The simplest and most-studied model for a quantum dot is a two-dimensional model
with parabolic confinement and a magnetic field,B = ∇×A,

H =
N

∑
i=1

1
2m∗

(
pi −

|e|
c

A i)
)2

+
N

∑
i=1

1
2

m∗
ω

2r2
i +

N

∑
i< j

e2

εr i j
+

N

∑
i=1

e
c
Bi ·σi . (4)

The sum overN particles now refers to theN conduction band electron quasiparti-
cles, which are far fewer than theNe electrons in theab initio or pseudopotential
Hamiltonians, Eq. (1) and Eq. (2). The single-particle states in the absence of a mag-
netic field are the solutions to the two-dimensional harmonic oscillator, with energies
Enxny = h̄ω(nx + ny + 1). With a magnetic field, the single-particle problem is still an-
alytically solvable and gives the well-known Fock-Darwin states [20]. The interacting
system is commonly studied with QMC many-body simulations.

2.3. Interatomic potentials

To study spatial arrangement of the ions in a structure, a common starting point is an
empirical interatomic potential that replaces the full Born-Oppenheimer potential. The
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simplest approximation, appropriate to rare gas atoms is a pair potential:

H =
Natoms

∑
i=1

P2
i

2Mi
+ ∑

i< j
atoms

Vi j (Ri j ). (5)

Quantum Monte Carlo techniques can simulate the quantum behavior of these atoms.
For example, the effect of zero point motion of light atoms in nanostructures can be
studied. Also, Bose condensates, such as superfluid He4 nanodrops, can be numerically
simulated with QMC [21] using an empirical interatomic potential.

2.4. Lattice models and tight-binding Hamiltonians

Lattice models, such as the Hubbard model, have been extensively studied with quan-
tum Monte Carlo. However, these models have seen little application to nanostructures.
Very realistic models of single-electron properties in semiconductors have been con-
structed using tight-binding Hamiltonians [22, 23, 24, 25]. While QMC can be applied
to tight-binding models, the number of atoms and electrons in typical semiconductor
nanostructures makes QMC too costly. Instead, many-body effects in tight-binding mod-
els have been included with Slater-determinant, or configuration interaction (CI), expan-
sions [26]. The recent work of Zhang and Krakauer [27] using lattice QMC in a space
of Slater determinants may be the best approach for future QMC applications to tight-
binding Hamiltonians.

Another area where lattice models may become relevant is the study of coupled
nanostructures. While single-particle physics may suffice to describe individual quantum
dots, arrays of coupled dots may form highly correlated structures, such as a Hubbard
lattice. This has already been seen for crystalline C60, where the lattice of buckeyballs is
described well by a three-band Hubbard model. Effective electronic coupling parameters
have been extracted from atomistic calculations for coupled C60 molecules [28, 29] and
for coupled self-assembled dots [30]. These parameters are input for lattice Hamiltonians
that can be studied with lattice QMC [31].

3. ZERO TEMPERATURE METHODS

Although absolute zero is unattainable in the real world, an essential starting place is
the quantum ground state. One of the reasons for this is that for many physical systems,
room temperature (300 K≈ 25 meV) is low compared to the Fermi temperature of a
typical metal (5×104 K ≈ 5 eV) or the binding energy of a hydrogen atom (1.5×105 K
≈ 13.6 eV). The zero point motion of quantum mechanics makes even the ground state
of a quantum system quite interesting.

The ground state of anN-particle system may be described by a wavefunction in 3N
dimensions. (For the most part we neglect the spin degrees of freedom for simplicity of
presentation.) Traditional numerical methods for solving partial differential equations,
such basis set expansions or the use of a grid, are unable to handle the high dimension-
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ality of the wavefunction for even a few particles. Monte Carlo techniques, on the other
hand, scale very well to high dimensional systems.

In this section, several ground state Monte Carlo algorithms are described. The first
of these, variational Monte Carlo (VMC), is perhaps easiest to describe because of its
direct analogy with classical thermodynamic simulations. As its name implies, it is a
variational method and is simply a technique for numerically evaluating the energy and
other properties of rather realistic trial wavefunctions. Another method, diffusion Monte
Carlo (DMC), is able to project properties of the true ground state using a stochastic
process. This section concludes with a discussion of difficulties posed by fermionic
systems and excited states, and presents several common approaches to these problems.
For a review of ground state quantum Monte Carlo to molecules and solids, see Ref. [32].

3.1. Metropolis Monte Carlo

Before discussing quantum Monte Carlo methods, we briefly review the Metropolis
(or Markov chain) Monte Carlo method as applied to classical thermodynamic simula-
tions. Thermodynamic quantities may be written as averages over the Boltzmann distri-
bution,

〈O〉=
∫

dSπ(S)O(S)∫
dSπ(S)

, (6)

whereπ(S) is the weight or probability of a configurationS in the ensemble andO(S)
is the estimator for propertyO. The configurationS may refer to the positions of the
electrons, or of the ions, or of electron spin, or in the case of path integrals the particle
permutations; the formalism is identical in all of these cases.

Metropoliset al. [33] proposed the following Markov process for evaluating the ratio
of integrals in Eq. (6):

1. Start with an initial (arbitrary) configurationS0.
2. To advance the configuration fromSi to Si+1:

(a) Choose a trial configurationS′i from a transition probabilityT(Si → S′i).
(b) Evaluate the acceptance ratio,A ,

A (Si → S′i) = min

{
1,

T(S′i → Si)π(S′i)
T(Si → S′i)π(Si)

}
(7)

(c) CompareA (Si → S′i) to a random variateζ ∈ [0,1). If ζ < A , thenSi+1 = S′i ,
otherwiseSi+1 = Si .

The Markov processS0,S1,S2, . . . generated by the Metropolis algorithm eventually
samples the distributionπ(S). The quantityO is estimated by averaging over the random
walk:

〈O〉 ≈ 1
n

i last

∑
i=ifirst

O(Si), (8)
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A = (p_new/T_new)/(p_old/T_old)
if(A > rand () ) {

VARIATIONAL MONTE CARLO CODE

call initstate (s_old) 
p_old = psi2 (s_old)
LOOP {

call  sample (s_old,s_new,T_new,1)
p_new = psi2 (s_new) 
call sample (s_new,s_old,T_old,0) 

s_old=s_new
p_old=p_new
naccept = naccept +1}

call averages (s_old)           }

Initialize the state

Sample new state 
Evaluate psi_trial

Evaluate psi_trial

Find transition prob. 
for going backward 

Acceptance prob.

Accept the move

Collect statistics

FIGURE 2. Outline of a VMC code. The calculated average and variance of the energy can be used to
optimize a parameterized trial function.

wheren = i last− ifirst + 1 is the number of steps in the average,ifirst is determined by
looking at the time seriesO. Discussion of how to perform the statistical analysis of the
correlated data from a Markov chain can be found in Allen and Tildesley [34].

3.2. Variational Monte Carlo

The essence of variational Monte Carlo is the use of Metropolis Monte Carlo meth-
ods, commonly used in classical thermodynamics, to evaluate expectation values for
a trial wavefunctionψT by sampling the densityπ(R) = |ψT(R)|2. We show the out-
line of a simple VMC code in Fig. 2. As in the case of analytic variation methods, the
trial wavefunction is parameterized, and the parameters are optimized to minimize the
energy. (One can also minimize the variance of the energy estimator [35].) The advan-
tage of using Monte Carlo is that much more realistic wavefunctions may be tried when
Monte Carlo integration is used. Better wavefunctions lead to stricter upper bounds on
the energy and better estimates of other expectation values.

To calculate expectations of quantum mechanical operatorsO(R) diagonal in the
position basisR we can use the expression in Eq. (6). With an assumed many-body
trial wavefunctionΨT(R), we takeπ(R) = |ψ(R)|2 andO(R) = ψT(R)−1Oψ(R). For
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example, the energy expectation value for the trial wavefunction is,

〈E〉=
∫

dRψ∗
T(R)HψT(R)∫

dRψ∗
T(R)ψT(R)

=
∫

dR|ψT(R)|2EL(R)∫
dR|ψT(R)|2

≥ E0 (9)

whereEL(R) = ψT(R)−1HψT(R) is the “local energy” of the trial wavefunction andE0
is the unknown exact energy. Note that only ifψT = Φ0, thenEL = E0 everywhere, and
the variance of the integrand goes to zero. This is the “zero variance” property of the
energy estimator.

3.2.1. Slater-Jastrow trial functions

The most common trial wavefunction for fermionic systems is a Slater-Jastrow pair-
product wavefunction,

ψT(R) = det|φi(r j)|exp

[
−∑

i< j
u(r i j )

]
. (10)

Here the functionsφi are single particle orbitals, and the “Jastrow” factorsu(r i j ) add
correlations to the (exchange only) Slater determinant. Both the orbitalsφ and the func-
tions u can parameterized. One can determine exact conditions at small distances [36]
and at large distances [37]. A particular advantage for charged systems is the accuracy
of analytic Jastrow factors [37]. In some cases a single determinant is insufficient and
the wavefunction must be written as a sum of determinants. An alternative is to modify
the orbitals to include many-body effects.

There are efficient procedures [38] for evaluating the local energy of a trial wavefunc-
tion. The local energy is a sum of the potential energy and the kinetic energies of each
particle:

EL(R) = V(R)−
N

∑
i=1

eu∇iλi∇ie
−u, (11)

where∇i is the gradient operator for the coordinates of particlei, λi is h̄2/2mi , the inverse
mass of particlei andu(R) = − logψT(R) is negative of the log of trial wavefunction.
This expression may written in terms of the derivatives ofu.

EL(R) = V(R)+
N

∑
i=1

[∇iλi∇iu− (∇iu)λi(∇iu)] . (12)

In the effective mass formulation, it is straightforward forλ to describe a position-
dependent effective mass tensor.

To evaluate derivatives of Slater determinants, one uses the identity,

Di detM = detM(MT)−1DiM, (13)
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whereM is a matrix andDi is any derivative operator acting on particlei, such asDi = ∇i
or Di = ∇2

i . Thus, to evaluate the local energy of a Slater determinant it is sufficient to
evaluate the gradient and Laplacian of the single particle orbitals and the inverse of the
Slater matrix.

To speed evaluation of Slater determinants, update formulas can be used as follows.
When a particlej is moved, the new determinant value is quickly found from a vector
multiply,

detM′ = detM
N

∑
i=1

M−1
ji φi(r ′j). (14)

If the move of particlej is accepted, the Slater matrix inverse must be updated,

(M′
ki)

−1 =


(

detM
detM′

)
Mki ; k = j,

M−1
ki − (M′

ji )
−1

N

∑
m=1

Mkmφm(r ′j); k 6= j.
(15)

3.2.2. Improved determinants

As discussed below, the location of the nodes of the trial function are the only
uncontrolled approximation in ground state quantum Monte Carlo, so improving the
nodal surfaces is crucial to achieving higher precision. One successful approach to going
beyond a Slater determinant of one body orbitals is an approach based on analyzing the
effect of electron-electron interaction as a perturbation to the mean field solution. The
Slater Jastrow trial function contains first order terms in a perturbation analysis. The
second order terms contain backflow terms as well as three body (bosonic) effects. It is
the former which puts correlation in the nodal surfaces. The orbitals are perturbed as

φk = φk(r +∇Y(R)) (16)

whereY(R) is the backflow potential, usually taken as a sum of renormalized pair
interactions [39].

3.2.3. Order (N) methods for wavefunction evaluation

The computer time needed to repeatedly evaluate Slater-Jastrow wavefunctions is the
bottleneck that currently limits system size. In most applications, the Slater inverse ma-
trix elements are updated incrementally, so that order(N3) operations are required to
move allN particles. This scaling results because the Slater determinant is dense, and
each orbital must be evaluated for each electron position. For insulating systems, it is
well-known that the orbitals may be transformed into localized (or Wannier) functions,
without affecting the Slater determinant. With these localized functions, the Slater de-
terminant becomes sparse, and each electron overlaps only a small number of orbitals,
independent of system size. This “order(N)” technique has recently been implemented
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by Williamson, Hood, and Grossman [40]. They have used this for benchmark calcula-
tions of bandgaps of silicon quantum dots [41, 42]. The Jastrow functions also involve
pairwise sums, which scale as order(N2). In a further approximation, the Jastrow func-
tion are taken to be short range, so the pairwise sums can be kept to be order(N) as
well.

3.3. Sampling with drifted Gaussians

As a way of introducing the Diffusion Monte Carlo algorithm, we discuss an efficient
method for moving the particle in Metropolis Monte Carlo and thereby evaluating the
expectation values in Eq. (6). Consider a particle diffusing in a potentialU(R). Thermo-
dynamics tells us the time-averaged distribution of the particle will be proportional to
exp[−βU(R)]. We takeβU to be a fictitious quantity, which will be chosen to sample
the desired probabilityπ(R) = |ψT(R)|2. The “potential”U must then be determined by
our wavefunction, soβU(R) =−2log|ψT(R)|.

Now consider the dynamics. A Brownian particle obeys a stochastic equation of
motion, which in the overdamped case (inertial mass→ 0) takes the form,

dR= (BF)dt+dw, (17)

whereF =−∇U is the force on the particle,B is the mobility, anddw is a random fluc-
tuation with mean 0 and varianceλ dt. For classical systems, the fluctuation-dissipation
theorem tells us that the temperature, (T) the mobility, and the amplitude of the fluctu-
ations are related byλ = BkBT. With this relation, we find that the equation of motion
is

dR= 2λdt∇ logψT +dw. (18)

Note thatλ sets relation between the fluctuations and the potential — largerλ leads
to more fluctuations. In the next sectionλ will be identified with the inverse mass
h̄2/2m of particles in the diffusion Monte Carlo algorithm. Since the mobilityB can
be a symmetric tensor,λ can also be a tensor, an identification that is necessary for
application of diffusion Monte Carlo to particles with anisotropic mass tensors.

In VMC calculations, the “time step”τ = dt is not really taken to be very small.
Rather, Eq. (18) is used as a motivation for a transition probabilityT(R→ R′) of the
form of a drifting Gaussian with varianceλτ and drift 2λτ∇ logψ, and used with the
usual Metropolis algorithm. The rejection step in Metropolis ensures that the proper
distribution is sampled for any value ofτ. The rejection step allows any transition
probability T, so the drifting Gaussian may be further modified (provided the reverse
probability remains finite). For example, the maximum “drift” of the Gaussian is often
limited to stabilize the algorithm in case∇ logψT can become arbitrarily large. For small
τ the rejections become very rare and Langevin dynamics are recovered.
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3.4. Diffusion Monte Carlo

Although VMC is useful for providing bounds to the energy and investigating forms
for trial wavefunctions, it is desirable to have an automatic procedure for getting the true
ground state energy. Diffusion Monte Carlo (DMC) is such a procedure. In DMC, the
exact ground stateΦ0(R) is projected using the imaginary time propagator,e−βH , where
H is the many-body Hamiltonian andβ is an interval in imaginary time. This property
can be understood by expanding an initial trial functionψT in terms of the (unknown)
exact eigenstatesΦi and eigenvaluesEi of H. The propagated state is then,

e−βH
ψT = ∑

i=0
e−βEi Φi〈Φi |ψT〉. (19)

For largeβ , thei = 0 term dominates and we have:

lim
β→∞

e−βH
ψT = Φ0e−βE0〈Φ0|ψT〉. (20)

For a long-but-finite projection time the second leading term has a relative coefficient
e−β (E1−E0). Therefore, the systematic error for a finite projection time is exponentially
decaying with a decay rate of(E1−E0), with a leading factor that is proportional to the
relative contribution of the first excited state in the trial wavefunction.

To sample the ground state wavefunction, factor the projection operator into many
small steps,

Φ0(RM) ∝

[
M

∏
i=1

e−τH

]
ψT . (21)

For small τ the kinetic and potential contributions of the Hamiltonian factor (this
breakup is known as Trotter’s theorem and is exact asτ → 0 [43]), and we have

Φ0 ∝ lim
M→∞

[
M

∏
i=1

1

(4πλτ)Nd/2

∫
dRi−1e−

(Ri−Ri−1)2

4λτ e−τV(Ri−1)

]
ψT(R0). (22)

If we sample the propagator at each step, this becomes a Markov process that samples
the true ground stateΦ0, after for a sufficiently long projection timeβ .

This method is known as diffusion Monte Carlo (DMC) because of its similarity to
classical diffusion described in the last section. We show an outline of a simple DMC
code in Fig. 3. There are two problems with Eq. (22): (i) we would rather sampleΦ∗

0Φ0,
and (ii) the exponential factore−τV is very unstable for many physical problems. One
solution these problems is to work with path integrals, as discussed in the next section,
Sec. 4. (Most closely related to this discussion is the variational path integral approach of
Sec. 4.8, in which a trial density matrixρT = ψTψ∗

T is projected to sampleΦ∗
0Φ0 [21]).

Importance sampling [7, 44] is needed to make the algorithm efficient. With impor-
tance sampling, the propagator〈R|exp(−βH)|R′〉 gets multiplied by the trial function:

PψT (R→ R′) = 〈R|exp(−βH)|R′〉ΨT(R)−1ΨT(R′) (23)
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A = (psi_new**2/T_new)
      /(psi_old**2/T_old)
if(A > rand () ) {

DIFFUSION MONTE CARLO CODE

call initstate(s_old) 
psi_old = psi (s_old)

LOOP {
LOOP {

call  sample (s_old,s_new,T_new,d_old,1)
psi_new = 

weight *= exp(- tau * local_energy (s_old) ) }

if (psi_new * psi_old < 0 ) { 
weight = 0

} else { 

psi (s_new) 

call sample(s_new,s_old,T_old,d_new,0) 

s_old=s_new
psi_old=psi_new
naccept = naccept +1} }

call averages (s_old)           }

Initialize the ensemble
      of states

Sample new state from
      drifted Gaussian 
Evaluate psi_trial
Check node crossing
Kill walker if it crosses
   a node of psi_trial

Evaluate psi_trial

d_old = drift(s_old) Evaluate grad psi_trial
Loop over steps
Loop over walkers

d_old = drift (s_old) Evaluate grad psi_trial
Find transition prob. 

for going backward 

Acceptance prob.

Accept the move

Update weight

Collect statistics
call   reweight (s_old) Reweight ensemble

FIGURE 3. Outline of a fixed-node DMC code. The algorithm works with an ensemble of walkers,
each with its own state and weight.

In the small time step limit, this propagator can be shown to be given by:

PψT (R→ R′) = (4πλτ)−
Nd
2 exp

[
−(R′−R−λτ∇ ln |ΨT |2)2

4λτ
− τEL(R)

]
. (24)

Remarkably, this is simply the drifted-Gaussian VMC propagator, Eq. (18), with an
additional weight factor proportional to the local energy. Note that the Hamiltonian only
enters throughEL in the weight factor; if you turn off the weight you actually sample the
many-body Hamiltonian that hasψT for its ground state, recovering VMC. In practice, a
constant term, the trial energyε0, is subtracted from the local energy in the weight term.
If ε0 = E0, the true ground state energy, then the weights will be close to one.
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The weight may be handled in different ways. One method, pure diffusion Monte
Carlo, uses a large number of configurations, each carrying a cumulative weight. How-
ever, this procedure is inefficient, since eventually one configuration accumulates all of
the weight. It is more efficient to have branching and death processes for the walkers to
keep the weights close to one. At each step, the walker continues asNcopiesnew walkers,
where

Ncopies= floor[e−τ(EL−ε0) +ζ ], (25)

andζ is a random variate, 0≤ ζ < 1. If Ncopies= 0 then the walker dies. It is necessary
to provide some weak feedback toε0 in order to stabilize the population. The feedback
introduces a bias, so it should be kept small and a large populationNwalkers� 1 of
walkers should be maintained. Detailed discussion of the algorithms with a view to
reducing the time step error is given in Refs. [6, 45]

An alternative to branching is the use of transient estimates where a cumulative weight
is carried along for each walker, but only for a finite projection time. Implementation
of this method can be done with a cyclic buffer so that the old contributions to the
weight can be discarded as the walker evolves. This method is more stable, however the
projection time must be long enough to project out any excited states. Because of the
weights and the added overhead of carrying along the weights, the efficiency is lower
than with branching methods.

3.4.1. Estimators in diffusion Monte Carlo

Diffusion Monte Carlo has a serious complication in computing most physical observ-
ables. Since the quantity being sampled isψ∗

TΦ0, averages (called mixed estimators) are
of the form

〈O〉DMC =
∫

dRψ∗
T(R)OΦ0(R)∫

dRψ∗
T(R)ΦO(R)

. (26)

Physical observables are ground state expectations (i. e. |Φ0|2 ), rather than the unphys-
ical mixed estimators.

OperatorsO that commute with the Hamiltonian, are unbiased. In particular, DMC
has no trouble calculating total energies. RewritingΦ0 in terms of the projected trial
state lim

β→∞
e−βHψT ,

〈O〉DMC = lim
β→∞

∫
dRψ

∗
T(R)Oe−βH

ψT(R)

= lim
β→∞

∫
dRψ

∗
T(R)e−βH/2Oe−βH/2

ψT(R)

=
∫

dRΦ∗
0(R)OΦ0(R), (27)

where commutation ofO andH was necessary to move the operatorO between the two
halves of the projector.
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Operators such as correlation functions, structure factors, the probability density, and
even components of the total energy do not commute. To correct the mixed estimator,
we assume that the trial wavefunction is close to the true ground state and extrapolate
[36] the ground state estimate using the VMC estimate,

〈O〉= 2〈O〉DMC−〈O〉VMC . (28)

This extrapolation is, of course, an uncontrolled approximation, and should be used with
caution.

A better way to deal with these operators in DMC is to use forward walking algo-
rithms [46, 47]. One calculates projected expectation values

〈O〉tproj = lim
β→∞

〈ψT |e−HtprojOe−βH |ψT〉, (29)

wheretproj is the projection time. Large values oftproj give estimates〈O〉tproj that ap-
proach the true ground state value, at the cost of an increasing variance. To implement
this technique, store the estimator values for each walker in a cyclic buffer. As the ran-
dom walk proceeds, the properties are copied along with the walkers. The measurements
stored on the walkers automatically “age” through DMC weighting and branching pro-
cesses. It is useful to record estimates for many different projection times during the
simulation to determine whether the projection has converged before the variance be-
comes too large.

3.5. The fermion sign problem

Fermion statistics introduce a serious problem in the diffusion Monte Carlo algo-
rithm. The diffusion propagator must be antisymmetrized introducing negative signs,
which cannot be interpreted as classical probabilities. To calculate properties of gen-
eral quantum states, existing algorithms are either approximate or scale exponentially
with the number of particles. For example, Variational Monte Carlo has no fermion sign
problem since|ψT |2 is always positive, however the results are biased by the assumed
trial function. We first discuss an approximate procedure, then an exact procedure for
handling fermion antisymmetry.

3.5.1. The fixed node approximation

It is always possible to take the ground state wavefunction to be real since if a complex
wavefunction is a solution so are its real and imaginary parts. Itsnodesare the locations
where the trial function vanish in the 3N dimensional coordinate space. In the fixed node
(FN) approximation [4, 5], one requires that the projected wavefunction is restricted to
have the same nodes as a real trial functionψN. Effectively, an infinite potential barrier
is placed on the nodes of the trial function in theNd dimensional configuration space,
and with this barrier the Bosonic DMC algorithm is applied. The fixed-node constraint
ensures that the sampled probability density remains non-negative.
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The fixed-node energy is the lowest energy consistent with the assumed nodal sur-
faces. As such, it must lie between the variational energy and the exact energy. The
exact nodes give the true ground state energy, and all other choices give higher ener-
gies. Typically 70% to 90% of the error in the variational energy is recovered with the
fixed-node approximation [48]. This is accomplished with no additional work in finding
better trial functions, simply implementing the branching procedure on top of a VMC
algorithm.

In calculations on strongly confined quantum dots, the nodal surfaces are often very
well approximated by the trial wavefunction, and FN DMC can obtain very accurate
ground state energies.

3.5.2. Release node methods

For systems with smaller number of particles, or when the need for high precision
merits longer computer times, there is an automatic way to improve the FN results,
known as released node (RN) Monte Carlo [49]. The idea is to let the fermion sign back
into the problem, but in a controlled way. Released node is very similar to transient
estimate DMC. Both methods are exact for fermions, although released node is tailored
to take advantage of the FN DMC algorithm.

When a walker crosses a node, it is allowed to continue (with the proper change of
sign) for a certain predefined lifetime,TR, after which time it dies. IfTR is zero, this
is simply the FN DMC algorithm. The estimated energy converges monotonically and
exponentially fast to the exact energy. It is desirable to project as long as possible, subject
to the exponential growth of the statistical noise asTR increases.

In the implementation of RN DMC, one samples many different choices ofTR with
the same simulation run. Each walker gets a timert that is initialized tot = 0. The first
time a walker crosses a node, its timer is started. To sample an estimator with projection
time TR, only those walkers with timerst < TR are included in the average. Whenever a
walkers timer exceeds the largest projection time being examined the walker is killed.

The expectation values may be plotted versus projection time to check for conver-
gence. In this way, it is possible to get exact ground state energy estimates from long sim-
ulations of finite fermion systems. Of course, the fermion sign problem is still present,
so extension to larger systems or longer projection timesTR eventually becomes expo-
nentially more difficult.

3.6. Excited states

A QMC method to calculate excited state energies is presented in Refs. [50, 51]. A
summary follows. Suppose we choose a set ofm trial wavefunctions,fα , α = 1, . . . ,m
and ask for the lowest energy in the space spanned by this set. The result is the general-
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ized eigenvalue problem [50]

m

∑
β=1

[Hαβ −ΛkNαβ ]dkβ = 0, (30)

whereφk = ∑β dk fβ is thekth eigenvector with eigenvalueΛk and the matricesN andH
are the overlap and Hamiltonian matrices in our trial basis:

Nαβ =
∫

dR1dR2 fα(R2) fβ (R1), (31)

Hαβ =
∫

dR1dR2H fα(R2) fβ (R1). (32)

McDonald’s theorem ensures thatΛk ≥ Ek for eachk. The matrix elements can be
computed by a Metropolis random walk, sampling some trial function|ψ|2. A good
choice for the sampling function is|ψ|2 = ∑m

k=1 |φk|2, where φk is an approximate
eigenfuction. With a single random walk, all the needed matrix elements are computed
at once.

This procedure can be improved using projection on the basis with the operatore−tH

as was done in diffusion Monte Carlo. In the limit of larget the eigenvaluesΛk approach
the low energy eigenvaluesEk within the Hilbert space spanned by the trial functions
{ fα}. To sample the matrix elements ofN andH, a random walk is performed using the
guiding functionψ, as described in Section 3.3. At each step in the walk, the coordinates
Ri+1 of the particles are updated using the guiding function,

R(i+1) = R(i) + τλ∇ log|ψ(R(i))|2 +(2τλ )
1
2 χi , (33)

whereχi is a normally distributed random with zero mean and unit variance andτ is the
time step. The matrix element ofe−tH may be estimated by integrating the local energy
of the guiding function,ELψ(R), along the block,

Wn,n+k = exp

{
−τ

n+k−1

∑
j=n

1
2
[ELψ(Rj)+ELψ(Rj+1)]

}
, (34)

where the local energy of the guiding functionELψ is given by

ELψ = ψ
−1(R)Hψ(R). (35)

Thus, the weightWn,n+k is the weight of the walker at stepn+ k, given by the product
of the weights the previousk steps.

The matricesN andH may be estimated by

nαβ (kτ) =
1
p

p

∑
i=1

Fα(Ri)Wi,i+kFβ (Ri+k) (36)

and

hαβ (kτ) =
1
p

p

∑
i=1

Fα(Ri)Wi,i+kFβ (Ri+k)ELβ (Ri+k), (37)
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whereFα = fα/ψ andELβ = f−1
β

(R)H fβ (R) is the local energy of the trial wavefunc-
tion.

The excited state technique has been used to calculate scattering lengths for exciton-
exciton scattering in semiconductors [52], discussed in Sec. 3.11.3. The technique may
be also useful for calculating tunneling rates or lifetimes in nanostructures.

3.7. Pseudopotentials

As described in section 2.1,ab initio calculations often use pseudopotentials to
remove core electrons. For local potentials, the diffusion Monte Carlo technique
is straightforward to apply. Non-local pseudopotentials, found in the pseudopo-
tential Hamiltonian of Eq. (2), lead to a non-local contibutions to the propagator,
exp[−τV̂( j)

` (|r i −Rj |)]. This non-local propagation could be implemented sampling the
angular distribution, so that electron walks discontinuously hop around the core while
acquiring a phase and a weight. An exact evaluation of the non-local pseudopotential
propagator would lead to a sign problem that seriously reduces the efficiency. To
avoid this sign problem, pseudopotentials are commonly handled with the frozen core
approximation [53, 54, 32]. The pseudopotential requires extra work to evaluate angular
integrals of the non-local pseudopotentials. This approach is successful for systems
containing atoms beyond the first row of the periodic table [32].

3.8. Position-dependent mass and pseudo-Hamiltonians

In some models, the Hamiltonian contains a position-dependent mass. For example,
effective mass models of semiconductor heterostructures have a mass tensorM(r) that
depends on the local material and strain. The generalization of the kinetic energy must
be Hermitian in order to satisfy the continuity equation, thus the tensor mass function
λ (r) = h̄2M−1(r)/2 gets sandwiched between the gradient operators,

HKEψ(r) =−∇ ·λ (r) ·∇ψ(r). (38)

Such a Hamiltonian term also occurs in the pseudo-Hamiltonian technique for removing
core electrons [55, 56]. The propagator for Eq. (38) involves derivatives of the mass
tensor,

P(r ′→ r) =
1√

(4πτ)3det|λ |
exp

[
−(∆r) ·λ−1 · (∆r)

4τ
− τEL

]
, (39)

where
∆r = r − r ′−λτ∇| lnΨT |2− τ∇λ . (40)
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3.9. Other Hamiltonians

In effective-mass semiconductor physics, one must consider coupling of multiple
bands. For example, the Luttinger Hamiltonian [57],

HL =
h̄2

2m

[(
γ1 +

5
2

γ2

)
∇2−2γ2(∇ ·J)2 +2(γ3− γ2)(∇2

xJ2
x +∇2

yJ2
y +∇2

zJ2
z)
]
, (41)

describes valence band mixing of light and heavy holes in cubic semiconductors. Here
γ1, γ2, andγ3 are the Kohn-Luttinger parameters andJ is an operator that acts of the
four valence bands like the angular momentum operator acts on an atomicJ = 3/2 state.
These multiple band Hamiltonians are similar to model Hamiltonians used in nuclear
QMC calculations [58, 59]. To our knowledge, multiband QMC has not been attempted
for semiconductor nanostructures.

3.10. Fixed phase and generalized boundary conditions

There are many physical situations which lead to complex valued ground state wave-
functions. For example, one may also wish to study excited states with definite linear or
angular momenta. For electrons in a magnetic field with vector potentialA, the Hamil-
tonian is

H = ∑
i

1
2m

(
h̄
i
∇i −

e
c
A(r i)

)2

+V(R). (42)

leading to a complex-valued Hamiltonian. While the equations in previous sections may
be generalized to complex wavefunctions, the propagators pick up phases that make
Monte Carlo sampling inefficient. Ortizet al. [18] introduced a fixed-phase approxima-
tion that allows projection to the lowest energy state for these cases.

Starting from a complex trial functionΨT(R), we vary the modulus to minimize
the total energy, while keeping the phase fixed. Writing the wavefunction asΨF(R) =
F(R)ΨT(R), whereF(R) is a real positive function, its energy is

E[F ] =
∫

Ψ∗
T(R)F∗(R)HF(R)ΨT(R)dR. (43)

By requiring the functional derivative ofE[F ] with respect toF(R) to be zero, subject to
the normalization constraint we find a Schrödinger-like equation for|ΨT |2F ,[

−∑
i

h̄2

2mi
∇2

i +∑
i

h̄2

2mi
∇i ·
(

∇i |ΨT |2

|ΨT |2

)
+ℜEL(R)

]
|ΨT |2F = ε|ΨT |2F, (44)

whereEL(R) = Ψ−1
T (R)HΨT(R) is the local energy of the trial wavefunction. For the

Hamiltonian, Eq. (42), the local energy is

EL =

[
∑
i
− h̄2

2m

(
∇2

i ΨT

ΨT

)
+

ieh̄A(r i)
mc

·
(

∇iΨT

ΨT

)
+V(R)− e2A2(r i)

2mc2

]
. (45)
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Thus the fixed-phase approximation may be implemented by simply working with
complex trial wavefunctions and using the real value of the drift and local energy in
the DMC algorithm.

3.11. Zero temperature examples and applications

Applications of zero temperature quantum Monte Carlo algorithms to nanostructures
have fallen into two categories:ab initio pseudopotential calculations on fullerenes and
colloidal dots and effective mass calculations on semiconductor quantum dots.

3.11.1. Fullerenes

Spherical carbon molecules, or fullerenes, have been an active field of research since
the discovery ofC60 in 1985. Quantum Monte Carlo calculations have been aimed at
determining the stability and structure of these carbon cages. All these studies have used
the DMC algorithm with fixed node approximation and frozen-core-approximated non-
local pseudopotentials. Studies by Grossman and Mitas established that the computing
relative energies ofC20 isomers requires the high accuracy of QMC [60]. Surprisingly,
very different energetic orderings of ring, bowl, and cage structures are predicted by
Hartree-Fock, local density approximation, generalized gradient approximation, and
QMC calculations. The prediction by QMC that the closedC20 cage is energetically
unfavorable was independently confirmed by later quantum chemistry calculations [61].

More recent calculations by Kent, Needs, and Rajagopal have studied carbon clusters
near the the crossover to fullerene stability [62]. Torelli and Mitas have looked at the
Peierls instability in carbon rings [63]. Using QMC methods adapted to larger systems,
Williamson, Hood, and Grossman [40] used DMC to calculate binding energies of a
series of fullerene cages:C20, C36, C60, C80, andC180. These calculations illustrate that
future DMC studies will be able tackle these larger and more common fullerenes as well
as carbon nanotubes.

3.11.2. Colloidal quantum dots

Hydrogen passivated silicon nanoclusters have become a common system for the the-
oretical study of band gaps. Starting from the siliane molecule, SiH4, the optical gap
of these clusters have been computed with many methods, including: density functional
theory, time-dependent density functional theory,GWcalculations, empirical pseudopo-
tential methods, and fixed-node quantum Monte Carlo.

Grossman and Mitas studied very small (n≤ 20) unpassivated clusters [64]. These
calculations focused on the role of correlation in the total energies of different isomers.
Later calculations by Mitaset alcombined LDA, DMC, andab initio molecular dynam-
ics to study structure and stability of Si20 and Si25 clusters [65].
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Calculations on hydrogen passivated clusters have taken advantage of linear-scaling
algorithms to study clusters with over 200 Si atoms [40]. Williamsonet al. [41] used
DMC to calculate optical gaps of silicon quantum dots with diameters up to 1.5 nm.
Since DMC is a ground state technique, they had to take advantage of the nodal con-
straint to study the first excited state. First they calculated the ground state energy, using
atomic positions and nodes from a density functional calculation. To get the energy of
the first excited state, they formed excited state nodes by replacing the highest occu-
pied molecular orbital (HOMO) with the lowest unoccupied molecular orbital (LUMO)
in the Slater determinant. They then approximated the optical gap as the difference of
this DMC-calculated first excited state energy and the DMC ground state energy and
compared with time-dependent density functional theory, tight binding, various density
functionals, and theGWapproximation. The QMC optical gaps are significantly higher
than those of most other methods, and the good agreement betweenGW and QMC at
small sizes suggests QMC gives accurate predications for optical gaps in these systems.

Other publications have combined QMC, density functional theory, andab initio
molecular dynamics to study the effects of surface chemistry [66], synthesis conditions
[42], and surface reconstructions [67] on the stability and optical properties of silicon
nanocrystals.

3.11.3. Effective mass models of quantum structures

The effective mass models lend themselves to efficient QMC simulations. There have
been a number of applications to several different nanostructures:

Spherical quantum dots.The first QMC calculations in quantum dots are for spher-
ical models. Although many experimental dots have a spherical shape, the presence of
multiple valence or conduction bands often limits single-band effective mass models
to descriptions of correlation trends, rather than detailed quantitative predictions [68].
Austin determined the binding energy of excitons in a spherical dot as a function of dot
radius [69] with DMC. For a GaAs dot embedded in AlGaAs, it was shown that the
exciton binding energy is maximum for an intermediate radius of about 30 Å. Pollocket
al. used a path integral technique to calculate energies for excitons and biexcitons as a
function of radius [70, 71], using an infinite confining potential. These calculations also
included temperature dependence, as discussed in Sec. 4.9.

Shumwayet al.performed a systematic study of the role of correlation in finite spher-
ical dots with QMC, and checked a commonly-used truncation of configuration inter-
action expansions [68]. A finite confining potential was used, with parameters taken
to represent typical colloidal and embedded dots. These calculations showed a peak in
the exciton binding energy at an intermediate dot radius and a much less pronounced
peak in the biexciton binding energy. The relative contributions of perturbation theory,
self-consistency, and correlation were quantified, showing that biexciton binding arises
entirely from correlation. The comparison to configuration interaction calculations re-
vealed that the usual practice of not including continuum states in the wave expansion
misses about half the biexciton binding energy. However, the ability of QMC to capture
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all the correlation must be weighed against detailed spectra that result from configura-
tion interaction calculations. Other calculations on spherical models include DMC cal-
culation of exciton and biexciton energies by Tsuchiya [72], and stochastic variational
calculations by Vargaet al. [73].

Self-assembled and gated quantum dots.The experimental interest in self-
assembled and gated quantum dots led to much theoretical work on two-dimensional
parabolic dots [20]. These models are often applied to electrons, since holes are more
complicated to treat because of several near-degenerate valence bands. Strain lifts this
degeneracy, so two-component (electron and hole) systems could be studied, but most
QMC calculations do not consider this. There have been several DMC calculations on
interacting electrons in parabolic dots [74, 75, 76, 77], ranging from two electrons up
to as many as twenty. Most of these calculations focus exclusively on total energies and
comparison to Hatree-Fock and LSDA. Shumwayet al.[78] used DMC to calculate total
energies for electron addition to a realistic single-band model of a strained InAs/GaAs
pyramidal dot, and found LSDA captured the essential correlation energy of electrons in
the strongly confined regime. The general trend is that while correlation is important to
multiexciton energies in all size dots, charged dots containing only electrons are highly
correlated only for very low densities.

Bolton [74] used a fixed-phase approximation [18, 74] to study two, three, and four
harmonically confined electrons in a magnetic field. Special trial wavefunctions were
used for these low numbers of electrons, and the resulting fixed-phase compared well
with exact diagonalization. A general trial wavefuction was proposed that would work
for larger numbers of electrons, and the resulting energies agreed reasonably well for the
special casesN ≤ 4. This work preceded the released-phase algorithm of Jones, Ortiz,
and Ceperley [19], so released phase was not attempted on this system.

Quantum rings. For certain growth conditions, the centers of large self-assembled
dots may be depleted, leading to ring-shaped InAs/GaAs nanostructures. There has been
interest in the electronic structure of these rings, as they can trap magnetic flux in
their cores, and also resemble one-dimensional wires with periodic boundary conditions.
These ring structures have been studied with QMC [79, 80].

Related calculations: exciton-exciton scattering.Excitons are bound states of an
electron and a hole, and obey Bose statistics. A low density exciton gas is an experimen-
tally realizable dilute Bose gas. The scattering lengthas of a dilute Bose gas determines
its properties, but is difficult to calculate. Shumway and Ceperley [52] performed an
essentially exact QMC treatment of exciton-exciton scattering. By fixing nodes in the
extended scattering states, the energies of scattering states were calculated from excited
state DMC [50, 52]. The dependence of the scattering state energies on node positions
determines the phase shifts and scattering lengths. A similar QMC technique has been
used much earlier by Carlson and Pandharipande to calculate nuclear cross sections [81].
The exciton calculations found scattering lengths for different spin orientations of the ex-
citons and a significant triplet-triplet to singlet-singlet scattering process [52]. At some
mass ratiosmh/me, the scattering lengths diverge in conjunction with the appearance
of biexciton vibrational states, an effect not found by earlier perturbative treatments.
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While these scattering calculations were performed for bulk excitons and did not in-
clude nanostructures, the technique should be adaptable to scattering in quantum wells
and wires or scattering from bound electrons in quantum dots.

4. PATH INTEGRAL METHODS

Path integral method allow for simulations at non-zero temperatures, without the ne-
cessity for considering individual excited states and without construction of trial wave
functions. Because of this they are particularly suited for systems undergoing phase
transitions. They are based on the same projection operator exp(−βH) as is diffusion
Monte Carlo, but the initial and final conditions of the state are treated differently. For
more details in this section see the review article by Ceperley [21].

4.1. Basic theory

Static and dynamical properties of a quantum system in thermal equilibrium are
obtainable from the thermal density matrix. Again, let us denote the exact eigenvalues
and eigenfunctions of a HamiltonianH by φi and Ei . In thermal equilibrium, the
probability of a given statei being occupied ise−Ei/kBT , with T the temperature. The
equilibrium value of an operatorO is

〈O〉= Z−1∑
i

< φi |O|φi > e−βEi , (46)

where the partition function is
Z = ∑

i
e−βEi , (47)

andβ = 1/kBT. The operator,e−βH is the density matrix. Although the above traces
can be carried out in any complete basis, in continuum PIMC one almost always works
in aposition basisbecause then all of the elements of the density matrix are non-negative
and can be interpreted as a probability. The position-space density matrix is

ρ(R,R′;β ) = 〈R|e−βH |R′〉= ∑
i

φ
∗
i (R)φi(R′)e−βEi , (48)

where:R= {r1, . . . , rN} andr i is the position of theith particle.
The path-integral formula for the many-body density matrix is arrived at by using

the product property of Green’s functionsM times, giving an expression for the density
matrix at a temperatureT, in terms of density matrices at a temperatureMT.

e−βH =
(

e−τH
)M

, (49)
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where thetime stepis τ = β/M. Written in the position representation,

ρ(R0,RM;β ) =
∫

. . .
∫

dR1dR2 . . .dRM−1ρ(R0,R1;τ)ρ(R1,R2;τ) . . .ρ(RM−1,RM;τ).
(50)

For MT large enough, we can write down a sufficiently accurate approximation to the
density matrix giving an explicit form for the low-temperature density matrix. Suppose
the Hamiltonian is split into the kinetic and potential energy,H = T +V . Theprimitive
approximation to the density matrix neglects their commutator:

e−τ(T +V ) ≈ e−τT e−τV . (51)

One might worry that this will lead to an error in the limit asM → ∞ with small errors
building up to a finite error. According to the Trotter formula [43] given earlier, one does
not have to worry:

e−β (T +V ) = lim
M→∞

[
e−τT e−τV

]M
. (52)

The Trotter formula holds if the three operatorsT , V andT +V are self-adjoint and
make sense separately, for example, if their spectrum is bounded below [82]. The kinetic
matrix can be evaluated using the eigenfunction expansion ofT ,〈

R0|e−τT |R1

〉
= ∑

n
L−3Ne−τλK2

n−iKn(R0−R1) (53)

= (4πλτ)−3N/2exp

[
−(R0−R1)2

4λτ

]
. (54)

Equation (54) is obtained by approximating the sum by an integral, appropriate only if
the thermal wavelength of one step is much less than the size of the box.

Using Eqs. (50), (52), and (54), we arrive at the discrete path-integral expression for
the density matrix in the primitive approximation:

ρ(R0,RM;β ) =
∫

dR1 . . .dRM−1(4πλτ)−3NM/2

exp

(
−

M

∑
m=1

[
(Rm−1−Rm)2

4λτ
+ τV(Rm)

])
.

(55)

This expression relates the quantum density matrix at any temperature to integrals over
the pathR1 . . .RM−1 of something that is like a classical Maxwell-Boltzmann distribution
function. This is the famous mapping from a quantum system to a classical system. The
Feynman-Kacs formula is obtained by taking the limitM → ∞, making a continuous
path.

A single Rk is referred to as thekth time sliceor a bead. Thepath is the sequence
of points{R0,R1, . . . ,RM−1,RM}. The time associated with the pointRk is defined as
tk = kτ. A link m is a pair of time slices(Rm−1,Rm) separated by timeτ. Theactionof a
link is defined asminusthe logarithm of the density matrix:

Sm≡ S(Rm−1,Rm;τ)≡− ln[ρ(Rm−1,Rm;τ)]. (56)
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We can interpret the path-integral expression, Eq. (55), as a classical configuration
integral; the action is analogous to a classical potential-energy function divided by
kBT. In the classical analog, the kinetic link action corresponds to a spring potential
connecting beads representing the same atom in successive time slices. The classical
system is a chain of beads connected with springs. We call such a chain apolymer. In
fact, the bead-spring model of real-life polymers is a useful picture. The potential action
represents interactions between beads of different atoms, keeping the polymers out of
each other’s way (for a repulsive potential). The potential is represented by an inter-
polymeric, potential which is peculiar from the classical point of view in that it interacts
only at the same “time” and only between beads on different chains.

Thermodynamical properties, or static properties diagonal in configuration space, are
determined by the trace of the density matrix,i.e., the integral of Eq. (55) overR0 with
R0 = RM. The formula for diagonal elements of the density matrix then involves a path
that returns to its starting place afterM steps: aring polymer.Because the partition
function of the quantum system is equal to the partition function of the classical system,
there is an exact, systematic procedure for understanding many properties of quantum
systems purely in terms of classical statistical mechanics. Anything about a quantum
system that can be written as matrix elements of the density matrix, has a classical
statistical-mechanical analog.

Shown in Fig. 4 are pictures of two-dimensional path integrals. What is usually done
is to plot thetrace of the paths in the x-y plane, projecting out the “time” coordinate.
Shown are six distinguishable helium atoms in a periodic square at 2 K with 80 time
slices. The filled circles are markers for the beginning of imaginary time,i.e., R1. There
is nothing special about that value of imaginary time, but it is useful to place a mark at
a common bead for each polymer, since the potential acts only at equal “times.” Path
integrals are like directed polymers: the paths have a direction.

Shown in Fig. 5 are the same paths projected onto the(x, t) and (y, t) planes; the
vertical axis is imaginary time. This is theworld-line perspective. Both real polymers
and these paths are “fractals.”

One should always keep in mind that all these pictures show are points sampled from
a product of thermal density matrices. They have only an indirect relationship to real-
time dynamics or paths. They tell us mathematically precise information, but it must be
correctly interpreted. Correlations along the paths are the Laplace transform of real-time
linear-response functions. Even though the imaginary-time dynamics is not directly real-
time dynamics, it is very important. For example, it is impossible to tell from a single
time slice whether or not a liquid is a superfluid, but one can recognize a superfluid by
examining the connection of the paths in imaginary time.

4.2. The action

It is clearly desirable to make a good but cheap approximation to the exact link action.
The better we can make the individual link action, the fewer the number of time slices
and the shorter the “polymer.” The sampling becomes much easier as the paths have
fewer links and the estimation of various quantities such as the kinetic energy have
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FIGURE 4. The trace of the paths of six helium atoms at a temperature of 2 K with 80 steps on the
paths. The filled circles are markers for the (arbitrary) beginning of the path. Paths that exit on one side of
the square reenter on the other side. Successive beads are connected with straight lines.

FIGURE 5. A world-line diagram of the paths shown in Fig 4. The vertical axis is imaginary time.
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smaller statistical fluctuations.
The Feynman-Kac (FK) formula is a guide to better actions. Using it, we can write

the exact action as

e−U(R0,RF ;τ) =
〈

exp

[
−
∫

τ

0
V(R(t))dt

]〉
RW

, (57)

where〈. . .〉RW means to average over all Gaussian random walks (bridges) fromR0 to
RF in a “time” τ. One can sample Brownian paths and to evaluate the exponential in the
FK formula. One gets into trouble for many-body systems or at low temperatures, since
the exponential can fluctuate wildly. It is possible to use direct sampling to estimate the
exact action in special situations. The results can be used either to suggest new forms or
to adjust parameters in an existing form.

The task of finding a good action is different from that of finding a good integrator
for an ordinary differential equation because of the fractal nature of the paths. Since
paths do not have continuous derivatives, predictor-corrector or leapfrog methods are
not as useful. On the other hand, statistical methods for improving the convergence work
very well. Several possible strategies for choosing the high-temperature density matrix
will now be examined. All of them converge to the correct answer at sufficiently high
temperature, but their rates of convergence depend on the potential energy.

An easily computed property of the exact action is its behavior as two particles
approach each other. It can be shown that the divergent part of the action should approach
a two-particle form. For a Coulomb interaction, this condition leads to a cusp condition
on the action atr = 0:

lim
r i j→0

dU(R,R′;τ)
dri j

=−
eiej

(d−1)(λi +λ j)
. (58)

Hereei is the charge on particlei andλi = h̄2/2mi . The path averaging in the FK formula
smooths the potential so that the action is finite at the origin instead of having ar−1

singularity. For a Lennard-Jones,r−12 potential, the action at smallr must diverge as
r−5. One can also derive exact properties of the action at large distances by considering
the action as a function of the fourier transform of the density and then going to the
long-wavelength limit.

Semiclassical methods for improving the action rely on the fact that, at very high tem-
peratures, the major contribution to the FK path-integral comes from paths neighboring
a single “classical” path. For small imaginary-times the optimal path is a straight line
connectingR0 andRF , and the action is the integral of the potential energy along this
straight-line path,

USC(R0,RF ;τ) = τ

∫ 1

0
dsV(R0 +(RF −R0)s) . (59)

In another approach, we assume that the potential is quadratic in the region near the
2 endpoints. The exact density matrix for a quadratic potential is a Gaussian [83]. The
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result to orderλ is

UH(R0,RF ;τ) = τV(R∗)+
τ2λ

6
∇2V(R∗) (60)

− τ

12
(RF −R0)∇∇V(R∗)(RF −R0)−

τ3λ

12
[∇V(R∗)]2.

This expansion is equivalent to the Wigner-Kirkwood orh̄ expansion of the action if we
make the choice ofR∗ = R0. See, for example, the derivation for the diagonal element
in Landau and Lifshitz [84]. Other choices are possible.

Although one is picking up higher-order contributions with the harmonic expansion, it
does not uniformly converge for a hard potential. At larger, where the potential is small,
the expansion is adequate, but at smallr, where quantum effects are very important, all
terms in the expansion are large. Suppose the potential goes asr−12 at smallr. Then the
second and third terms will diverge asr−14 while the last term will diverge asr−26 at
small r. In fact, quantum diffraction causes the exact action to diverge only asr−5. For
the coulomb potential, the cusp condition is not arrived at with this expansion.

One can try to choose the harmonic reference system better. One strategy is to choose
it to minimize the free energy of the trial action; see, for example Ref. [85]. One can
also evaluate the exact harmonic action instead of keeping only terms of orderλ .
These improvements could work in a system that was nearly harmonic, for example,
a nearly classical solid or a molecule with small zero-point vibrations. However, the
improvements will not help much in regions where the potential is highly anharmonic.

If the potential energy is sufficiently smooth, one can take the averaging process of
the FK formula up into the exponent. The cumulant expansion [86] of the exponential
of a random variate,

〈ex〉= exp[〈x〉+ 1
2
(〈x2〉−〈x〉2)+ . . .]. (61)

Here x is some random variate, the brackets represent an average, and higher-order
cumulants have been neglected. Ifx is normally distributed, as it would if it were
the sum of many uncorrelated terms, the higher-order cumulants are zero. Now let
x =

∫
τ

0 dtV(R(t)), the total potential of a path, and average over all free-particle paths
from R0 to RF . The first-order cumulant action is,

UC(R0,RF ;τ) =
∫

τ

0
dt 〈V(R(t))〉

µ
, (62)

where we average over the total density of points,µ(R), thecumulant density, sampled
by the random walk in going fromR0 to RF .

A better approach for a hard-sphere-like system is to determine the exact action for
two atoms and then to use that to construct a many-body action [87].

V(R) = ∑
i< j

v(r i − r j). (63)

Now apply the Feynman-Kacs formula, Eq. (57). What enters is the integral of the
potential energy along a path. Letxi j be the exponentiated integral of the pair energy
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along a random walk,

xi j = exp

[
−
∫

τ

0
dt v(r i j (t)

]
. (64)

Thenxi j is a random variable drawn from some distribution function that depends on
the end points (R0,RF ). If the variablesxi j are uncorrelated with each other, we can
interchange the product and averaging operation,

e−U =

〈
∏
i< j

xi j

〉
≈∏

i< j
〈xi j 〉. (65)

The average is the interacting part of theexactaction for apair of atoms. Thepair-
productaction is

U2(R,R′;τ) = ∑
i< j

u2(r i j , r ′i j ;τ), (66)

whereu2(r i j , r ′i j ;τ) is the exact action for a pair of atoms.
This approximation has several advantages: the pair product will be correct to lowest

order in a density expansion of the action, since it is only when we have three atoms
in close proximity that we make a substantial error. The pair density approximation
is perfectly well defined for all potentials, either Coulombic or hard-sphere-like, in
contrast to the cumulant action, which exists only for integrable potentials. At low
temperatures the pair action approaches the pair-product or Jastrow ground-state wave
function discussed earlier.

Theend-pointapproximation to the pair action,

u2E(r i j , r ′i j ;τ) =
1
2

[
u2(r i j , r i j ;τ)+u2(r ′i j , r

′
i j ;τ)

]
, (67)

is exact on the diagonal (r = r ′) and is symmetrical inR andR′. This approximation
is very convenient computationally, since the primitive action simply gets replaced by
an effective potential and the action depends only on the the radial variablesr i j . Hence
onceu2(r;τ) has been computed and saved, its use takes the same amount of computer
time as the primitive action (assuming potentials are calculated with look-up tables).
However, most of the accuracy of the pair action is lost by the end-point approximation.

The exact pair action can be calculated efficiently by the matrix-squaring method [88].
First, the pair density matrix is factorized into a center-of-mass term that is free-particle
like and a term that is a function of the relative coordinates. One then expands the relative
pair density matrix in partial-waves:

ρ(r , r ′;τ) =



1

2π
√

rr ′

∞

∑
l=−∞

ρl (r, r ′;τ)eil θ , 2D

1
4πrr ′

∞

∑
l=0

(2l +1)ρl (r, r ′;τ)Pl (cosθ), 3D

(68)
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whereθ is the angle betweenr and r ′. Each partial-wave satisfies the 1D recursion
formula,

ρl (r, r ′;τ) =
∫ ∞

0
dr′′ρl (r, r ′′;τ/2)ρl (r ′′, r ′;τ/2) . (69)

If we square the density matrixk times, it will result in a lowering of the temperature by
a factor of 2k. Additional details are given in Ref. [21].

4.3. Sampling the paths

Here we consider how to sample the integrand. The total configuration space to
be integrated and summed over is made of elements:s = [R1, ....,RM] where Rk =
{r1k . . . rNk} are the path variables. We need to sample the distribution

π(s) =
exp[−∑M

k=1Sk]
Z

, (70)

whereSk is the action of thekth link. The partition functionZ normalizes the functionπ
in this space. This distribution is different from that of a simple liquid because the points
on the path are linked together by the kinetic springs, which can cause the convergence
of simple simulation techniques to become slow.

One can sample the distribution using a molecular-dynamics (MD) method [89].
There are two major concerns with MD methods: ergodicity and efficiency. It is easy to
see that a free-particle path-integral system will never come into equilibrium because a
collection of uncoupled harmonic oscillators will never exchange energy with each other.
Even with an interparticle interaction, if the time stepτ is small enough, ergodicity is still
a worry. However, by using a Nose thermostat, or by resampling the velocities (hybrid
Monte Carlo) each dynamical step, one is guaranteed to get convergence to the correct
distribution. Tuckermanet al. [90] have introduced methods for speeding convergence
by separating the slow and fast dynamical scales. They have shown in some cases that
path-integral molecular dynamics (PIMD) can be almost as efficient as PIMC.

These results are interesting because there are situations in which dynamical tech-
niques are advantageous. In Monte Carlo methods, an elementary move is typically of
one or several particles at several time steps, while in molecular dynamics, one moves
all particles at all time steps simultaneously. In some cases, this can be computationally
much more efficient. For example, one might want to do a PIMD calculation of a system
where the Born-Oppenheimer electronic energy is calculated with a dynamical method
such as the Car-Parrinello [91] local-density-functional algorithm. The electronic calcu-
lation must be done for all the ions simultaneously so one may as well move all the path
variables as well. Another example of a case in which dynamical methods may prove
useful is provided by fermion path-integral MC.

However, the chief difficulty with dynamical methods is that it is not possible for the
permutation to change continuously, since it is a discrete variable. Dynamical methods
by themselves cannot treat problems in which quantum statistics are important.

Now, turning to MC methods, consider the problem of how best to sample a single
point R at time τ,. This point is connected to two fixed end points,R1 and R2, with
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imaginary-time coordinates, 0 and 2τ, respectively. In the simplest choice for the tran-
sition probability, a single particle at a single time slice is displaced uniformly inside
a cube of side∆, adjusted to achieve 50% acceptance;∆ must be on the order of, or
smaller than, the thermal de Broglie wavelength for a slice,∆ ≈

√
λτ.

The heat-bath transition rule will have the smallest correlation time among all transi-
tion rules that sample a distribution forRequal to

T∗(R) ∝ ρ(R1,R)ρ(R,R2). (71)

To approximateT∗, we drop factors independent ofR and factor out the free-particle
action. A repulsive potential will cut holes in the free-particle Gaussian distribution
where a non-moving atom is present. To incorporate these, one can sample from a
correlated Gaussian:

TS(R) =
√

(2π)3|A|e−(R−R̄)·(2A)−1·(R−R̄), (72)

where the 3×3 positive-definite covariance matrixA and the mean position vector̄Rare
free parameters of the sampling. Let us define the sampling potential ˜u by

e−ũ(r ′) =
∫

dr exp

[
−(r − r ′)2

2σ
−u(r , r ;τ)

]
. (73)

Correlated sampling proceeds as follows. First the midpointRm = (R1 + R2)/2 for the
move is determined. Then̄R andA are determined using the following equations with
Ũ(R) = ∑i< j ũ(r i j ),

R̄=
∫

dRRT∗(R)
W

= Rm−σ
∂Ũ(Rm)

∂Rm
, (74)

A =
∫

dR(R− R̄)(R− R̄)T∗(R)
W

= σ

(
I −σ

∂ 2Ũ(Rm)
∂Rm∂Rm

)
, (75)

whereI is the unit tensor. To sample the multivariate normal distribution, one Cholesky-
factorizes the covariance matrix asA = SST , whereS is an upper triangular matrix.
Then if χ is a vector of Gaussian random numbers with zero mean and unit variance,
Sχ +Rm has the desired mean and variance. The effect of atomic interactions on the free
sampling is to push the mean position of an atom away from its free-particle mean, if
another particle is nearby. Similarly, the free-particle variance is changed by interactions
with neighboring particles. In directions where the curvature of the potential is positive,
the cage of surrounding atoms results in a narrower Gaussians being sampled.

No matter how well single-bead sampling has been optimized, as the value ofτ de-
creases, the random walk will diffuse through configuration space more and more slowly
since the computer time needed to change the overall shape of a single path scales asM3.
This scaling law, in conjunction with the use of the primitive action, necessitates very
large values ofM, has caused many path-integral studies to be prohibitively expensive.
To achieve faster convergence, one must go beyond moves of a single time slice.

The simplest multiple-slice move is adisplacementmove, in which the entire chain is
translated by an amountδ . Moves will be rejected if the chain ends up overlapping with
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another chain. The displacement will not change the internal shape of the path; there has
to be a different kind of move to do that. Since the move will takeO(M) operations,
a displacement should be attempted much less frequently than other kinds of quicker
moves.

To generalize the displacement move to the internal degrees of freedom of the paths
one can use the normal modes of the kinetic action. These are obtained by a discrete
Fourier transform along the “time direction” [92]. We define the normal-mode coordi-
nate by:

Qk =
M

∑
l=1

Rl e
2π ikl/M. (76)

The total kinetic action is decoupled in normal modes,

K =
1

4λτ

M

∑
i=1

(Ri −Ri−1)2 =
1

λβ
∑
k

sin2(πk/M)|Qk|2. (77)

Each of the 3NM normal-mode variablesQk is independent of the others and has a
Gaussian distribution. There are two quite different ways of using normal modes. First,
in normal-mode samplingone uses this form of the kinetic action to construct a transition
move [93]. One samples one or moreQk from some transition probability, such as
a Gaussian distribution with squared width,λβ/[2sin2(πk/m)]. Then the new path
coordinates are determined by the inverse Fourier transform and the move is accepted
or rejected based on the change in action and the ratios of transition probabilities. When
a potential is present, only the largek modes can be sampled directly from the free-
particle Gaussian, since they cause a small movement of the path. In contrast, the lowk
modes are moved only a small amount, say|Q′

k−Qk|< γk, with γk adjusted to get 50%
acceptances. The center-of-mass mode (k = 0) is just the displacement move described
above.

The second approach is to work directly with the normal-mode variables by rewriting
the path integrals as integrals overQk instead ofRk. This is the method ofFourier path
integrals[94]. In using the Feynman-Kacs formula, rather than discretizing the random
walk in M time steps, one instead discretizes inM normal modes. The action is now∫ β

0 dtV(R(t)), where

R(t) = R0 +
M

∑
k=1

Qke
−2π itk/β . (78)

One has to worry about approximating the effect of the neglected modes,k > M.
Their effect can be accounted for by using the cumulant action (the partial averaging
technique). See [95] for a systematic comparisons of efficiency of the Fourier-based
methods versus the discrete-time path integrals.

Multilevel Monte Carlo (MMC) is another general sampling method [8] which can
efficiently make multi-slice, many-particle moves. Suppose the full configurations is
partitioned at the beginning of a Monte Carlo step intol + 1 levelss= (s0,s1, . . . ,sl ),
where the coordinatess0 are unchanged by the move,s1 are sampled in the first level,
s2 are sampled in the second level, etc. The primed coordinates(s′1, . . . ,s

′
l ) are the

new trial positions in the sense of a Metropolis rejection method. Suppose one has an
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A = (T_old/T_new) exp(-delta_u[level]) Level acceptance prob.

sample_permutation

A = exp(-delta_u[level]+delta_u[level+1])
          *(T_old/T_new)
if (A > rand () ) {

} else {
exit multilevel loop

}

if (level==0) {

if (A > rand () ) {

PATH INTEGRAL MONTE CARLO CODE

call initstate (s_old) 
u_old = action (s_old)
LOOP {

LOOP level=maxlevel-1,0,-1 {
call  sample(s_old,s_new,T_new,T_old,level)

call  init_new_sampling (s_new,s_old,P)

delta_u[level] =
action_diff (s_new,s_old,level) 

delta_u[maxlevel] =
action_diff (s_new,s_old,maxlevel) 

s_old=s_new
naccept = naccept +1}

call averages (s_old)           }

Initialize the state

Sample path at this level

Evaluate action change

Evaluate action change

Initialize new path ends
  using permutation

Evaluate action

Multilevel sampling loop

Level acceptance prob.

Entire move accepted

Move ends if rejected at
  any level

Collect statistics

P = (s_old,T_new,T_old)

FIGURE 6. Outline of a PIMC code with multiilevel sampling. In multilevel Monte Carlo, there are
multiple accept/reject steps for each step in the Markov chain. The multilevel algorithm allows large
sections of the path to be sampled with a Lévy construction of a Brownian bridge.

approximation to the action as a function of variables in that level and in previous levels.
It is used to decide whether the sampling of the path should continue beyond the current
level. We require that the action at the last level be exact,

πl (s0,s1, . . . ,sl ) = π(s). (79)
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Now, we choose a sampling rule forsk contingent on the levels already sampled. The
sampling then proceeds past levelk with probability

Ak(s′) = min

[
1,

Tk(sk)πk(s′)πk−1(s)
Tk(s′k)πk(s)πk−1(s′)

]
. (80)

MMC gains in efficiency because the coarsest degrees of freedom are sampled and
accepted or rejected before the finer movements are even constructed.

In the Lévy construction of a Brownian bridge, one begins with two fixed end points
(say R0 at “time” 0 andRβ at “time” β ) and samples a bisecting point at timeβ/2,
exactly as was described with free-particle sampling. The bisecting pointR of the
interval(R1,R2) is

R=
R1 +R2

2
+η , (81)

where η is a normally distributed random vector with mean zero and covariance,√
λ |t2− t1|/2. Having sampledR = Rβ/2, one now bisects the two new intervals

(0,β/2) and(β/2,β ), generating pointsRβ/4 andR3β/4 with the same algorithm. One
continues recursively, doubling the number of sampled points at each level, stopping
only when the “time” difference of the intervals isτ.

This method is used with the multilevel method to accomplish early rejection. Sup-
pose a single-particle or many-particle path consisting ofm = 2l − 1 time slices is
“clipped out” wherel is thelevel. The fixed end points areRi andRi+m. The new points
to be sampled will have the coordinates:Ri+1, . . . ,Ri+m−1. The coordinates are parti-
tioned into levels as in the Lévy construction. First the midpoint is sampled. Then the
same algorithm is used to find the midpoints of the two remaining intervals, etc. One
needs to approximate an action at thekth level, but the detailed form of the level action
does not matter very much since one is looking for a quick and dirty way of deciding
whether to continue the bisection procedure or to reject and start over. For example, in
helium simulations, any function that detects overlapping atoms will accomplish this.

4.4. Bosons, superfluidity and Bose condensation

The path integral discussion up to this point have been appropriate to distinguish-
able (Boltzmann) particle statistics. Quantum statistics was not taken into account.
For Bose systems only totally symmetric eigenfunctions contribute to the density ma-
trix; those such thatφi(PR) = φi(R) whereP is a permutation of particle labels,i.e.,
PR= (rP1, rP2 . . . rPN). By symmetrizing the density matrix with respect to particle la-
bels, we obtain the bosonic density matrix

ρB(R0,R1;β ) =
1

N! ∑
P

ρ(R0,PR1;β ), (82)

whereρ is the boltzmannon density matrix. A straightforward evaluation of the sum is
out of the question onceN gets large, since there will beN! terms. Each term in the sum
is positive, so we cansamplethe permutations in the sum. A bosonic simulation consists
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FIGURE 7. The extended trace of six4He atoms at a temperature of 0.75 K and with 53 time slices.
The dashed square represents the periodic boundary conditions. Three of the atoms are involved in an
exchange which winds around the boundary in the x direction.

of a random walk through the path spaceand the permutation space. For Fermions
special techniques are employed to deal with the sign as we discuss below.

The partition function for a Bose system has the form

ZB =
1

N! ∑
P

∫
dR0 . . .dRM−1exp

(
−

M

∑
m=1

Sm

)
, (83)

with the path closure:PRm = R0. Paths are allowed to close on any permutation of their
starting positions. In the classical isomorphic system, ring polymers can “cross-link.”
Fig. 7 shows the trace perspective (the projection onto the xy plane) of the same paths.
Three of the particles are involved in a cyclic exchange, which wraps around the periodic
boundary conditions. This path wrapping around the boundaries is called awindingpath
and is a direct manifestation of superfluidity. In Eq. (82), it appeared thatR0 was singled
out to receive the permutation. By change of variables one can make the permutation
occur at any time slice. All time slices are still equivalent, and they can all be used to
calculate averages. Whenever one constructs an estimator for an observable, one should
consider whether Bose symmetry has been taken into account properly.

Now consider the sampling of permutations. The simplest type of move would be
to insert a pair permutation of two atoms without moving the coordinates of the path.
This type of move can fail to sample the permutation space for a system with repulsive
interactions because the trial move is improbable. Instead, one can apply the multilevel
Metropolis methods to the joint sampling of permutations and path moves. A set of time
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slices are first selected for the path move. A local permutation move consists of applying
a cyclic exchange ofn atoms to an existing path. Since permutation space is discrete,
we can use the heat-bath method to sample a permutational change from the distribution
T∗(P) ∝ ρ(Ri ,PRi+m) whereP ranges over all cyclic permutations involvingn atoms.
If we make the end-point approximation for the density matrix, terms involving the
interaction will drop out since they are symmetric under particle interchange

T∗(P) =
1
CI

exp

[
−

n

∑
j=1

(r j,i − rP j,i+m)2/4nλ
∗
τ

]
, (84)

whereCI is a normalization factor. The cyclic permutation can either be explicitly
sampled from a precomputed table or it can be implicitly sampled with a walk through
particle labels.

According to Feynman’s theory [96], the superfluid transition is represented in the
classical system by the formation of macroscopic polymers,i.e. those stretching across
an entire system and involving on the order ofN atoms. Now we explain the properties
directly related to superfluidity; the specific heat, the momentum distribution, and the
superfluid density.

It was the shape of the specific heat curve of liquid4He and its singularity at 2.17 K
that gave rise to the name of the lambda transition. Feynman explained how macroscopic
bosonic exchange gives rise to this peak. The specific heat is proportional to the mean-
squared fluctuation of the exchange distance. At the critical point, the specific heat
diverges because there are both long and short exchanges present.

London, in 1938, supposed the superfluid transition in liquid4He to be the analog
of the transition that occurs in an ideal Bose gas, where below the transition, a finite
fraction of particles occupy the zero-momentum state. Penrose and Onsager [97] defined
Bose condensationin an interacting system as the macroscopic occupation of a single-
particle state, namely the state of zero momentum. The condensate fraction has a simple
meaning in terms of path-integrals. The probability density of observing a single atom
with momentumk is the Fourier transform of the single body density matrix,

nk =
1

Ω(2π)d

∫
dr1dr ′1e−ik(r1−r ′1)n(r1, r ′1), (85)

wheren(r1, r ′1) is defined as:

n(r1, r ′1) =
Ω
Z

∫
dr2..drNρ(r1, r2, . . . , rN, r ′1, r2, . . . , rN;β ). (86)

The paths that we have been discussing up to this point, each ending at the start of
another particle’s path, cannot be used to calculate the momentum distribution. To get the
momentum distribution, one removes the restriction on one of the atoms that it returns to
its starting position. At high temperature, where there are no particle exchanges,n(r , r ′)
will be almost free-particle like with a Gaussian end-to-end distribution:n(r , r ′) ∝
exp[−(r − r ′)2/(4λβ )]. Taking the Fourier transform, we end up with the Maxwellian
momentum distribution with a widthkBT.
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If a macroscopic exchange is present, as is the case in the superfluid state, the two ends
can become separated by much more than a thermal wavelength if they are attached to
a macroscopic exchange. For a 3D bulk liquid the single particle density matrix in the
superfluid state goes to a constant at large|r − r ′|. The momentum distribution, which is
the Fourier transform of the single particle density matrix, will then have a delta function
at the origin. The condensate fraction is the probability of finding an atom with precisely
zero momentum,

ñ0 =
(2π)3

Ω
n0 =

1
Ω2

∫
drdr ′n(r , r ′) = lim

r→∞
n(r). (87)

To find the condensate fraction of an inhomogenous system, one must diagonalize
the single particle density matrix, thereby determining the natural orbitals and their
occupation numbers.

Superfluidityis experimentally characterized by the response of a system to move-
ments of its boundaries. The rotating bucket experiment was first discussed by Landau
in 1941, who predicted that superfluid helium would show an abnormal relation between
the energy it takes to spin a bucket and its moment of inertia. A normal fluid in equi-
librium will rotate rigidly with the walls. The work done isE = 1

2Iω2, whereI is the
momentum of inertia andω is the angular rotation rate. On the other hand, a superfluid
will stay at rest if the walls rotate slowly, so that a smaller energy is needed to spin up the
container. The liquid that stays at rest is the superfluid. Experiments by Andronikashvili
in 1946 confirmed this prediction.

The effective moment of inertia is defined as

I =
dF
dω2

∣∣∣∣
ω=0

=
d〈Lz〉

dω

∣∣∣∣
ω=0

, (88)

whereF is the free energy, andLz is the total angular momentum operator in the ˆz
direction. The ratio of the effective moment of inertia to the classical oneIc is defined as
the normal density; what is missing is the superfluid density:

ρn

ρ
= 1− ρs

ρ
=

I
Ic

. (89)

Thus the superfluid density is the linear response to an imposed rotation, just as the
electrical conductivity is the response to an imposed voltage. This can be calculated
with path integrals as:

ρs

ρ
=

2m〈A 2
z 〉

βλ Ic
, (90)

where the projected area is
~A =

1
2∑

i, j
r i, j × r i, j+1. (91)

Note that the area of a path is a vector. For rotations about the ˆz axis we need only the ˆz
component of the area. The superfluid density is proportional to the mean-squared area
of paths sampled for a container at rest.
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Although superfluid response (like conductivity) is not itself a local property, it is
possible [98] to calculate a local contribution to the total response and thereby quantify
places that contribute to the superflow response. To define a local superfluid density we
write:

ρs(r) =
2mN
βλ Ic

〈∫
dr ′ ~A (r) ~A (r ′)

〉
=

2mN
βλ Ic

〈
~A (r) · ~A

〉
, (92)

whereA (r) is defined as

~A (r)≡ 1
2∑

i,k

(r i,k× r i,k+1) δ (r − r i,k). (93)

Since ~A (r) integrates to the total area, the local superfluid response exactly integrates
to the total response. Two types of contributions to the local superfluid density can
be distinguished based on the connectivity of the instantaneous paths: contributions of
particles on the same chain, which are positive, and contributions of particles on different
exchange cycles. By reversing the order of one exchange cycle, the contribution from
different cycles will change sign; if the cycles are spatially separated, the magnitude of
the contribution will be unaffected, so that their contribution will be much smaller.

A uniform magnetic field acting on charged particles is equivalent to a rotation, and
one can use these superfluid formulas for charged particles in magnetic fields. The
analogous phenomenon to superfluidity is the Meisner effect of superconductors. The
Hamiltonian in a magnetic field is

H =
1

2m

[
p− eA

c

]2

+V(R). (94)

In a constant magnetic field in the Coulomb gauge, the lowest-order change in the
Hamiltonian due to the magnetic field is proportional to the angular momentum operator,
e

mcp ·A = eB
2mcLz, hence the previous discussion applies if we replace the rotation rate

with eB
2mc. Then the zero-field diamagnetic susceptibility is

χ =−〈A
2〉e2

β h̄2c2
. (95)

For details see Ref. [99].
Periodic boundary conditions are more convenient for simulations, since no surfaces

appear and there is no curvature in making a loop around the boundaries. For the
superfluid density we get

ρs

ρ
=

〈W2〉
2λβN

, (96)

where the winding number is defined by

W =
N

∑
i=1

∫
β

0
dt

[
dr i(t)

dt

]
. (97)
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The winding number is a topological invariant of a given path. Paths with a nonzero
winding are the signal for superfluidity. This justifies the claim made earlier, that the
identification of a Bose superfluid requires the full imaginary-time paths. Static correla-
tion functions are not enough; one needs to know how the paths are connected up.

Macroscopic exchange is necessary to have both superfluidity and momentum con-
densation. However, neither property is simply proportional to the number of macro-
scopic exchanges. In 3D systems they go together; in 2D there is no condensation, but
the system is still superfluid.

4.5. Nanodroplets

Molecules confined in4He nanodroplets have been shown to exhibit excitation spectra
with clearly resolved rotational fine structure consistent with that of a free rotor, though
with an increased moment of inertia. Toennieset al. [100, 101] have shown that only a
few layers of4He coating the molecule are required to decouple the impurity from the
droplet and achieve free rotation. Nanodroplets provide a very interesting interface be-
tween the chemistry of solvation and nanoscale superfluidity. Importantly for quantum
simulation, they provide both an excellent test bed for methods, as well as many impor-
tant applications of the methods, because essentially exact calculations can be done of
the equilibrium properties. There is no sign problem since bose statistics are applicable.
Finite size effects, far from being a nuisance, are part of the interest, and temperature
effects are relevant. The theoretical uncertainties have to do whether the droplets are
in equilibrium and what is the precise interaction between the helium atoms and the
impurity.

While one can do simulations of helium droplets with either ground state methods,
such as DMC [102] or reptation Monte Carlo [103], here we will discuss the PIMC
approach, as it gives the cleanest physical interpretation. Other theoretical approaches
are discussed in the review volume [104]. Simulations have been performed with pure
4He droplets [105], predating the experiment and showing that the droplets of 64 atoms
are essentially superfluid, based on the area estimator Eq. 90. It was also found the
droplets of H2 droplets are superfluid [106], as long as the droplets are sufficiently
small. Larger clusters freeze into localized crystals, thus preventing bosonic exchange.
Such behavior has recently been found [107] for compound systems made from an OCS
molecule, a few hydrogen molecules, and surrounded by a droplet of4He. PIMC has
been used [108] to understand the details of the molecular exchange responsible for the
observations.

PIMC calculations of4He droplets containing an impurity are relatively straightfor-
ward and allow unambiguous calculation of the helium density and the fraction of it that
is superfluid. Because helium is strongly attracted to most impurities, a marked layered
structure is formed. The first 2 layers are relatively isolated from the rest, those atoms
exchange infrequently; the superfluid response in the first layer is reduced due to the
anisotropy of the helium density in that region. Only a small fraction of the particles in
the first layer are localized (not permuting) at low temperatures. Below 1 K, the major-
ity of the atoms in the droplet are part of exchange cycles with atoms in both the first
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layer and the rest of the droplet. Thus, while the effect of confinement on the thermal
excitations resembles that of a two-dimensional superfluid, this system is fundamen-
tally different from an isolated helium film. In Ref. [98] it is shown that the superfluid
response in the first layer is also significantly reduced by thermal excitations at the phys-
ical temperatures of the drops, 0.40 K.

4.6. Excitation spectra using MaxEnt

Most experimental probes of nanostructures are dynamical, for example, a measure-
ment of the electro-magnetic response. Here we discuss how to use the imaginary time
correlation functions from PIMC (or DMC) to derive dynamical information. The dy-
namic structure factorSk(ω) is related to the electromagnetic response and is a crucial
correlation function to calculate or observe, since through it one can see the excitations.
The dynamical structure factor is defined as

Sk(ω) =
1

2πN

∫ ∞

−∞
dteiωt 〈ρk(t)ρ−k(0)〉 (98)

=
1

NZ∑
mn

δ (ω −Em+En)e−βEn|〈m|ρk|n〉|2. (99)

Hereρk = ∑i e
ikr i is the Fourier transform of the density. The sum in the second equation

is over all pairs of exact states|n〉 with energyEn.
The imaginary-time density-density response function, defined as

Fk(t) =
1

NZ
Tr
{

ρ−ke
−tH

ρke
−(β−t)H

}
, (100)

is straightforward to calculate with path integrals or with the ground-state methods
discussed below. However, there is little in the way of structure inFk(t); to the eye it is a
featureless exponential decay up toβ/2, and then rises again because of the periodicity
in imaginary time; it is related toSk(ω) by a Laplace transform,

Fk(t) =
∫ ∞

−∞
dωe−tωSk(ω). (101)

Mathematically,Fk(t) andSk(ω) are equivalent, since an “inverse Laplace transform”
(or equivalently analytic continuation from imaginary to real time) is well defined. The
presence of statistical noise, however, rules out a direct inversion, since very small
features inFk(t) come from large features inSk(ω). The noise destroys the information
needed to do the inversion. The numerical inversion of a Laplace transform is a classic
ill-conditioned problem.

Silver, Sivia, and Gubernatis [109] have shown that Bayesian, or maximum-entropy,
techniques aid in this inversion by making the problem better conditioned. In addition
to using the Monte Carlo data for the inverse Laplace transform, one can useprior
information aboutSk(ω). In some models, the maximum entropy method has given very
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satisfactory inversions. Jarrell and Gubernatis [110] have reviewed the fundamentals and
practical details of this approach.

Bayes’ theorem can be written in the following form:

P[S(ω)|F(t)] ∝ PL[F(t)|S(ω)]PP[S(ω)]. (102)

The probability ofS(ω), given our PIMC data and the theoretical input [theposterior
probability], equals the probability of the PIMC data givenS(ω) [the likelihood] times
the prior knowledge ofS(ω) [the prior function].

The central-limit theorem guarantees that the noise inF(t) from a well-converged
PIMC is normally distributed

PL[F(t)|S(ω)] = exp

[
−1

2∑
t,t ′

δF(t)σ(t, t ′)−1
δF(t ′)

]
, (103)

whereδF(t) = F(t)−〈F(t)〉.
One knows a few things about any physicalS(ω): it is everywhere nonnegative, it

satisfies detailed balance and various sum rules, and it has certain asymptotic behaviors
at large and smallω. We need to construct a prior function so that anyS(ω) not satisfying
these conditions will have a zero prior function. For image reconstruction and many-
other applications the entropic prior has worked very well,

Pp[S(ω)] ∝ exp

[
α ∑

ω

S(ω) log(S(ω)/m(ω))
]
, (104)

whereα is an adjustable parameter andm(ω) is thedefault model. However, there is no
proof that the entropic prior is correct for the “distribution” that describesS(ω) and it
violates the principle that quantum energy levels repel each other.

Having chosen the likelihood and prior function, one can take either of two approaches
to using Bayes’ theorem. In themaximum-entropyapproach one finds theS(ω) that is
most likely, the one which maximizesP[S(ω)|F(t)]. This is a good procedure when
the probability distribution is narrow. Finding the maximum is very fast. A second,
more rigorous approach,average entropy, is to sampleS(ω) with a probability equal
to the posterior probability. This can easily be done with Metropolis Monte Carlo. This
approach is slower (but not nearly as slow as generating the original data) but does not
rely on any assumptions about how narrow or skewed the probability function is. Some
features ofS(ω) may be tightly constrained by the PIMC data, while other features are
not constrained. To compute errors, one simply looks at the fluctuations ofS(ω) coming
from the Markov chain that samplesS(ω). In general, maximum entropy gives spectra
that are too broad [111]; lines that are sharp become broad features.

4.7. Fermion PIMC: Fixed-node and fixed-phase methods

We now discuss the generalization of the path integral methods to fermion systems.
In the direct fermion methodone sums over permutations just as for bosonic systems.
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Odd permutations then contribute with a negative weight. The direct method has a major
problem because of the cancellation of positive and negative permutations; the efficiency
is:

ξ =
[

ZF

ZB

]2

= exp[−2β (FF −FB)] (105)

whereZF andZB refer to partition function andFF andFB to the total free energies for
Fermi and Bose statistics respectively. These are proportional to the number of particles.

The restricted path identity asserts that the nodes of the exact density matrix determine
the rule by which one can take only paths with the same sign. SupposeρF is the density
matrix corresponding to some set of quantum numbers which is obtained by using the
projection operator ˆa on the distinguishable particle density matrix. Then,

ρF(Rβ ,R∗;β ) =
∫

dR0ρF(R0,R∗;0)
∮

R0→Rβ∈ϒ(R∗)
dRte

−S[Rt ], (106)

where the subscript means that we restrict the path integration to paths starting atR0,
ending atRβ and are node-avoiding (those for whichρF(Rt ,R∗; t) 6= 0 for all 0< t ≤ β .)
The weight of the walk isρF(R0,R∗;0). It is clear that the contribution of all the
paths for a single element of the density matrix will be of the same sign; positive if
ρF(R0,R∗;0) > 0, negative otherwise. In particular, on the diagonal all contributions
must be positive.

Underlying the identity is the assumption that the random walk is a continuous
trajectory so we can say definitively that if sign of the density matrix changed, it had
to have crossed the node at some point. This presents a technical problem for discrete
time paths since we must decide whether the path crosses and crosses back in between
the sampled times. Lattice models or non-local Hamiltonians do not have continuous
trajectories so this method is not as straightforward for those models.

The “bosonic” path integral formulation can be applied to fermion path integrals; all
that is required is to take a subset of the bosonic paths. We shall see that it is important
to allow non-trivial, even permutations since they are directly related to Fermi liquid
behavior.

The problem with using Eq. (106) is that the unknown density matrix appears both on
the left-hand side and on the right-hand side (in the criterion of node-avoiding.) To apply
the formula directly, we would have to self-consistently determine the density matrix, a
nearly impossible task in high dimensions. In practice, what we need to do is to make
anansatzfor the fermion density matrix. The trial density matrix is used to define node-
avoiding. Using trial nodes we generate a better approximation to the density matrix.
Hence,ρ(R′,R;β ) is a solution to the Bloch equation inside the trial nodal cells, and
it obeys the correct initial conditions. It is not an exact solution to the Bloch equation
(unless the nodes ofρT are correct) because it can have gradient discontinuities at the
trial nodal surfaces.

Consider the case where one has spin1
2 fermions. Assume that there is no magnetic

field so that the Hamiltonian is independent of spin. Then we can quantize the spin axis
in theẑdirection. Suppose we want to calculate the partition functionZm in an ensemble
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whereSz is fixed to bem. It is not hard to see that this equals:

Zm =
1

N!
Trσ

{
∑
P

(−1)P
δ

N(σ ,Pσ)δ (∑
i

σi ,m)
∫

dRρD(R,PR)

}
. (107)

Now relabel the coordinate indices in the integration so that particles 1 throughN↑ =
N/2+mhave up spin and particlesN↑+1 throughN have down spin. All arrangements
of the spin variable in the trace contribute the same amount to the partition function and
we can just calculate one term and multiply by the number of ways of assigning spins:
N!/(N↑!N↓!). The following operator antisymmetrizes over the up spins and the down
spins individually.

A =
1

N ↑!N ↓! ∑
P↑,P↓

(−1)P↑+P↓P↑⊗P↓, (108)

where P ↑ (↓) operates on the up (down) spin coordinates only. With this one can
calculate spin-independent correlation functions in the fixedSz ensemble.

If we want to calculate the total partition function,Z = ∑mZm, the magnetization must
be sampled. To average over all spins one could occasionally attempt a spin flip from
one fixedm ensemble tom±1 and accept or reject that flip, depending on the path is
now legal. We can recover the fixed total spin ensemble by using the relationship:

ZS = (2S+1)(Zm−Zm+1). (109)

In an actual calculation, one does not make a geometric interpretation of the nodes.
Instead one computes atrial density matrix, typically a determinant, and uses that to
decide whether a given path is to be allowed. Paths for which the trial density matrix are
negative or too close to zero are rejected. Letve(r) be a single-particle external potential.
The distinguishable particle density matrix is then a product of solutions of the single-
particle Bloch equation:

− d
dt

g(r , t) = [−λ∇2 +ve(r)]g(r , t), (110)

with the boundary condition,

g(r , r∗;0) = δ (r − r∗). (111)

Then using the antisymmetric projection operator and the definition of a determinant,
we find for the spinless case:

ρF(R,R∗; t) =
1

N!
det[g(r i , r j,∗; t]. (112)

In the case where the external potential is zero (or a constant), the single-particle density
matrix is a Gaussian.

g(r , r∗; t) ∝ exp

[
−(r − r∗)2

4λ t

]
. (113)
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Militzer and Pollock have generalized this to the Hartree-Fock case [112].
To calculate the momentum distribution, the fermion sign comes back in, as it must.

Consider the ideal fermi-gas momentum distribution (for spinless fermions).

nk =
{

1/(2π3ρ) for k < kF
0 for k > kF .

(114)

Then

n(r) =
3

(kF r)3 [sin(kF r)−kF r cos(kF r)], (115)

where the Fermi wavevector for spinless fermion is related to the density bykF =
(6π2ρ)1/3. Sincen(r) is often negative, even with restricted paths we must have negative
weights entering. The momentum distribution has a discontinuity at the Fermi wavevec-
tor kF . As a consequence the single particle density matrix must decay at large distance
asr−2. We can get such long-range behavior only if there are macroscopic exchanges.
Hence, the existence of any kind of non-analytic behavior (we mean a discontinuity innk
or in any of its derivatives) implies that the restricted paths have important macroscopic
permutation cycles. Recent calculations with this procedure have been reported by Mil-
itzeret al. [113]. See the review article [114] for more details concerning restricted path
integrals.

4.8. Ground state path integrals

The ground state path integral method is a way of using the path integral method to
perform the averages appearing in diffusion Monte Carlo for the ground state. There
are two big advantages this approach gives for ground state properties: properties can
be computed without having to rely on the forward-walking or extrapolated procedure
and an explicit probability density for the path is obtained, making it easier to get such
quantities as forces or energy differences. For a description of reptation and path integral
methods see Refs. [21, 115, 116].

A trial function Ψ0(R) is projected asΨβ/2(R) = e−
β

2 HΨ0 and will converge to the
exact ground state. Let

Zβ = 〈Ψ0exp(−βH)Ψ0〉. (116)

The variational energy is:

E(β ) =−1
Z

dZβ

dβ
= 〈EL(0)〉. (117)

This derivative is implemented as the average local energy at either end of the path where
the local energy is defined asEL(R) = ℜ(Ψ−1

0 HΨ0(R)). As a function ofβ , E(β ) is
an upper bound that converges to the exact energy at largeβ and is equivalent to the
transient estimate method. Theβ derivative of the energy is strictly negative and is the
variance of the projected trial function.
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To calculate the density matrix, we divide imaginary time intoP time slices and make
an approximation for exp(−τH) where the timestep isτ = β/P. Then the probability
distribution function for a path is given by:

Π(s) = exp

[
U(R1)+U(Rp)+

p−1

∑
i=1

S(Ri+1,Ri)

]
. (118)

HereU = ℜ(ln(Ψ0)) and S is the link action. One can use the type of action used
in PIMC: namely a pair product action closed at the end with the wavefunction. The
disadvantage is in the treatment of the fermion terms, done with an approximate image
potential. The trial function does not appear in the action. With a good trial function
the local energy is nearly flat and breakup errors will come from just the commutator
of the Laplacian with drift. Using the expression for the importanced-sampled Green’s
function from Ref. [7], we find another expression for the link action:

〈R|e−τH |R′〉= cψ(R)/ψ(R′)e−τEL(R)−(R′−R−2λτF(R))2/(4λτ). (119)

HereF(R) = ℜ(∇U(R)). This expression should be symmetrized with respect toR and
R′.

For efficiency it is necessary to prevent changes in sign of the trial function. This
can be done within the fixed-node (real) or fixed phase (complex) approximation
[18] as discussed earlier within DMC. We modify the Hamiltonian by adding a term
λ∇(ℑ(log(Ψ0(R))))2 to the potential. Instead of the exact energy we get an upper
bound, the best upper bound consistent with the assumed phase.

There are several ways to move the ground state path integral. In the reptation proce-
dure, one of the two ends is sampled at random to be the growth end. A move consists
of sampling a new point near the growth end from a Gaussian distribution, exactly as is
done with DMC. The move is accepted or rejected based on the usual Metropolis for-
mula based on the reversed move. The old tail position is then discarded if the move is
accepted. Another type of move is an internal sampling move. An internal slice is picked,
and the midpoint between the adjacent slices is found and a new slice is sampled from
a Gaussian centered on that midpoint. The path moves less because it is constrained in
two directions but the move may be useful in getting rid of persistent configurations in
the middle. The sampling methods discussed earlier could be applied here to improve
the convergence.

One can also take a large step made of from several reptation moves (saym) in one
direction, a “block move”. A better approach is the bounce algorithm: we reverse the
direction on rejection. The “bounce” algorithm has several advantages over the “block
move” algorithm; the average number of steps in one direction is set automatically by
the algorithm, averages are taken every step and bad moves are rejected early.

4.9. Path integral simulations of quantum dots

There have been several path integral simulations of quantum dots. The earliest of
these was a study of excitons and biexcitons by Pollock and Koch [71, 70]. They used
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a simple effective mass model of a spherical dot with and infinite confining potential,
with parameters chosen to resemble CdS. With the thermal path integral, they calculated
the exciton and biexciton energies and charge distributions for temperatures from 6 K
to 200 K. They found an interesting change in radial charge distribution as a function
of temperature. At low temperatures, coulomb attraction caused the heavier hole to sit
near the center of the dot, somewhat more localized than the lighter electron. At high
temperatures the coulomb interactions are secondary, and the heavier hole was able
to more uniformly fill the dot, especially near the surface, due to its smaller thermal
wavelength. They also found increasing exciton and biexciton binding energy as the dot
size decreased due to their hard confining potential. This is in contrast to Refs. [69, 68],
where finite confining potentials lead to an optimal radius that maximizes exciton and
biexciton binding. It should be noted that Pollock and Koch’s thermal calculations do
not include thermal spin excitations; the results are for a fixedSz = 0 ensemble, which
gives less weight to spin polarized states than a true thermal ensemble.

Another type of path integral simulation was a low temperature (ground state) calcu-
lation of recombination rates in dots [117]. The radiative recombination rates of interact-
ing electron-hole pairs in a quantum dot are strongly affected by quantum correlations
among electrons and holes in the dot. Recent measurements of biexciton recombination
rates in self-assembled dots lie in the theoretically predicted range of one to two times
the rate of single exciton recombination, depending on the degree of correlation. Theo-
retical approaches using effective mass wave functions have been unable to accurately
determine biexciton recombination rates for a realistic, material specific model. They
have developed a Feynman path-integral formulation of the problem that allows the di-
rect evaluation of the recombination rate, including thermal and many-body effects. Us-
ing real-space Monte Carlo integration, they evaluate the path-integral expressions for
realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots,
including anisotropic effective masses.

5. CONCLUSIONS AND OUTLOOK

Quantum Monte Carlo methods are among the most general algorithms for quantum
many-body systems. They have come into the forefront of nanostructure simulations
with the availability of large computational resources. Future trends are for more ac-
curate calculations, larger number of particles, simulations of spin and magnetic ef-
fects,and the development of methods for more complicated nanostructures with real-
istic effects such as variable masses, dielectric functions, band effects, and disorder. A
number of problems remain for the future, in fact one can assume that the methods are
only in their infancy. Research on the fermion sign problem is progressing but unre-
solved in practice. Work on the general problem of quantum dynamics is at an even
earlier phase. Only a handful of properties have been computed within QMC routinely.
Fast accurate methods for computing a wide spectrum of properties is needed. Within
classical simulation and for lattice models, substantial progress has been made in using
various ensembles such as grand canonical, constant pressure and so forth and algo-
rithms that improve the convergence of the simulation. Because of the mapping from
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quantum mechanics into classical mechanics, many of these methods are generalizable
to quantum systems. Finally, QMC can deal with quite general systems, use sophisti-
cated mathematical methods (trial functions, sampling schemes estimators) and take full
use of distributed and parallel processing, but only if reliable software is available to the
research community.
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